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Global environmental challenges
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Soil measurement is key to addressing environmental challenges

Soil measurement is central in the development of scientific solutions to
improve soil health and promote sustainable development

‘...when you can measure what you are
speaking about, and express it in numbers, you
know something about it; but when you cannot
measure it, when you cannot express it in numbers,
your knowledge is of a meagre and unsatisfactory
kind; it may be the beginning of knowledge, but
you have scarcely, in your thoughts, advanced to
Thomson (1889) the stage of science, whatever the matter may be.’
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Shortcoming of current soil laboratory analyses

Our understanding of soil is gained through soil survey and chemical, physical,
mineralogical and biological laboratory analysis

But laboratory methods do have some shortcomings:
complicated analysis and measurement with-complex equipment
slow, results unavailable for at least days or weeks

difficult to know which method one should use and if there are ‘translations’
between different methods

variable results even in standardized/accredited labs

expensive
_—
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Soil sensing must be an essential part of the solution

Soil sensing can help to overcome the limitation of conventional methods
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We need soil sensing but not to replace conventional methods

These are important advantages as there is a growing demand for inexpensive
spatial, temporal soil information.
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Al will revolutionize soil sensing and analyses

Artificial Intelligence 1950s
_— ARTIFICIAL INTELLIGENCE

~ A technique which enables machines
Machine Learning

to mimic human behaviour

1980s
MACHINE LEARNING

'~ Subset of Al technique which use
statistical methods to enable machines
to improve with experience

2010s

DEEP LEARNING

T~ __Subset of ML which make the
computation of multi-layer neural
network feasible

Deep Learning ®

|dentify and ‘untangle’ complex
patterns and relationships from
multiple sensors

Optimise sensor
measurements/placement and
calibration

Accurate predictions of soil
properties and their response
to environmental change

« Ultimately sensing + Al will help to reinvent the ways we analyse soil
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Which sensors can we use to measure soil properties?
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proxéimal

Viscarra Rossel et al. (2011)




Proximal soil sensors
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Viscarra Rossel & Lobsey (2016)

Soil properties

Q Curtin University




Some examples

Sensors that are compatible because they measure uniquely different properties

ELECTRICAL
E-CHEM
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Passive gamma sensors

Sensor mounted on a vehicle, | A gamma spectrum recorded Interpolated maps useful for
equipped with RTK GPS at every sensing location understanding soil variability:
- 7 mineralogy, water, texture
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Active gamma attenuation: densitometer

Measures the Attenuation is defined by Direct measure of BD
attenuation of gamma Beer—Lambert’s law 1 Io\ _ Hw
=—1In(->)—"*p, 6
radiation passing Pb = s (1 ) us Pw
through a soil core Ii = exp [—X (usp, + Hypy0)]
0
Source  Sall Detector

137Cs core  e.g., Nal

Lobsey & Viscarra Rossel (2016); Viscarra Rossel et al. (2016) Q




Laser induced breakdown spectroscopy (LIBS)
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Electrochemical sensing of pH and plant available nutrients

Reaction kinetics can be modelled Validation against conventional
T methods and interpolated maps
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Sensors and what they measure: a summary from the literature

Soil property
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Sensing soil-on-a-chip

Soil property Lab-on-
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Pucetaite et al. (2021)

STXM-NEXAFS for spectral imaging of IR absorption microspectroscopy for identifica-
organic matter within soil aggregates tion and classification of unculturable soil microbes

Integrating microfluidics and miniature sensors in a chip, allows
inexpensive, real-time, in-situ, high-throughput soil analyses
and monitoring, e.g., microbial and interfacial processes




What can we gather from the summary table?

No single sensor system that can measure all properties,
but soil spectroscopy can measure many chemical,
physical and some biological properties
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What can we gather from the summary table?

No single sensor system that can measure all properties

Some sensor systems measure directly but many
measure indirectly and most need calibration

Q Curtin University



What can we gather from the summary table?

There is no single sensor system that can measure everything

Some sensor systems measure directly but many require calibration

Combining a carefully selected set of sensors offers several advantages
* increase information content
« improved accuracy and reliability
« provide redundancy
* increase versatility
« cost-effectiveness
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A multi-sensor platform: SCANS for measuring soil condition

Automated soil Sensors Data Measurements characterize soil
core sensing « vis and IR cameras analytics variability (x,y,z) at a fine spatial resolution
with embedded  y-densitometer and ML
computer « vis—NIR spectrometer
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Measurements taken at 5 cm depth increments from 1 m soil cores in total of 20 minutes
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Final remarks

Our general need to innovate to sustainably meet the world's needs for food
and environmental quality is served by the adoption of soil sensing

Using proximal soil sensors will help to farmers fine-tune enterprise management
and balance production with environmental quality, including the preservation of
soil

Sensing can empower farmers and land managers everywhere to instantly and

continuously focus management on their own specific conditions, effectively
enabling the implementation of sustainable soil management practices
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