

It makes sense to soil sense for environmental sustainability

Raphael VISCARRA ROSSEL Professor Soil & Landscape Science

17th International Symposium on Soil and Plant Analysis ISSPA 21–24 March Concepción, Bio-bio region, Chile

Global environmental challenges

Soil measurement is key to addressing environmental challenges

Soil measurement is central in the development of scientific solutions to improve soil health and promote sustainable development

Thomson (1889)

'...when you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely, in your thoughts, advanced to the stage of science, whatever the matter may be.'

Shortcoming of current soil laboratory analyses

Our understanding of soil is gained through soil survey and chemical, physical, mineralogical and biological laboratory analysis

But laboratory methods do have some shortcomings:

- complicated analysis and measurement with complex equipment
- slow, results unavailable for at least days or weeks
- difficult to know which method one should use and if there are 'translations' between different methods
- variable results even in standardized/accredited labs
- expensive

Soil sensing must be an essential part of the solution

Soil sensing can help to overcome the limitation of conventional methods

Relatively simple measurements, less sample preparation, potentially in situ

- Rapid measurements, timely results
- Cost-effective, many more measurements for a similar or smaller cost.
- Multivariate measurements (e.g., LIBS, PXRF, vis–NIR,...)
- Multi-sensor systems can measure different properties at once
- Smaller, cheaper, more configurable, wireless, e.g. IoT

We need soil sensing but not to replace conventional methods

These are important advantages as there is a growing demand for inexpensive spatial, temporal soil information.

The point is not to completely replace conventional lab methods, but to supplement them with sensing

AI will revolutionize soil sensing and analyses

1950s - ARTIFICIAL INTELLIGENCE

A technique which enables machines to mimic human behaviour

1980s MACHINE LEARNING

Subset of AI technique which use statistical methods to enable machines to improve with experience

2010s DEEP LEARNING

Subset of ML which make the computation of multi-layer neural network feasible

- Identify and 'untangle' complex patterns and relationships from multiple sensors
- Optimise sensor measurements/placement and calibration
- Accurate predictions of soil properties and their response to environmental change

Curtin University

• Ultimately sensing + AI will help to reinvent the ways we analyse soil

Which sensors can we use to measure soil properties?

Sensors that are compatible because they measure uniquely different properties

Passive gamma sensors

Sensor mounted on a vehicle, equipped with RTK GPS

Usually, data collected at 1 Hz

A gamma spectrum recorded at every sensing location

Spectrum measures naturally occurring isotopes of K, U, Th in topsoil and the integrated total count, which is related to mineralogy Interpolated maps useful for understanding soil variability: mineralogy, water, texture

Lobsey & Viscarra Rossel (2016); Viscarra Rossel et al. (2016)

Active gamma attenuation: densitometer

Measures the attenuation of gamma radiation passing through a soil core

Attenuation is defined by Beer–Lambert's law

$$\frac{I}{I_0} = \exp\left[-x\left(\mu_{\rm s}\rho_{\rm s} + \mu_{\rm w}\rho_{\rm w}\theta\right)\right]$$

Enables rapid, direct, accurate measurement of bulk density to depth

Lobsey & Viscarra Rossel (2016); Viscarra Rossel et al. (2016)

Laser induced breakdown spectroscopy (LIBS)

- A high energy laser pulse ablates a small amount of sample in to transient plasma, as the plasma cools, elements emit light at characteristics wavelengths, which are measured by a spectrometer.
- Elements are detected from emission peaks of particular wavelength, and the intensity of the peak is correlated to the element content.
- In a single spectrum can measure all elements present in the sample.

 Advantage over PXRF is that it can measure lighter elements, e.g., C

Electrochemical sensing of pH and plant available nutrients

Sensors and what they measure: a summary from the literature

	Soil property	γ-rays	X-ray	CCD	UV–VIS– NIR–MIR	LIBS	Microw. / Radar	Acoustic / Radio	EMI	E-chem.	E-noses	Mech.
Chemical	Organic C and fractions	I		I	I	I			I		I	
	Bioavailable nutrients		I		I	I				D	I	
	рН	I	I		I	I				D		
	CEC	I	I		I	I			I	I		
	Salinity/sodicity		I	I	I	I			I	D		
	Mineralogy	D	l I	I	D	I						
Physical	Water storage	D		I	D		D	I	I			
	Bulk density	D			I			l.				I
	Clay, silt, sand	i	I	I	l l	I		l l	I			
	Aggregation			I	I							
	Penetration resistance											I
Biological	Microbial activity									I	I	
	Microbial biomass				I						I	
	Respiration/GHG									D	D	
	Diversity/composition				I							
	Enzyme activity				I					I		
	Earthworms/fauna			I				I				

Sensing soil-on-a-chip

	Soil property	Lab-on- a-chip
Chemical	Organic C and fractions	
	Bioavailable nutrients	
	рН	
	CEC	
	Salinity/sodicity	
	Mineralogy	
Physical	Water storage	
	Bulk density	
	Clay, silt, sand	
	Aggregation	
	Penetration resistance	
Biological	Microbial activity	
	Microbial biomass	
	Respiration/GHG	
	Diversity	
	Enzyme activity	
	Earthworms/fauna	

Integrating microfluidics and miniature sensors in a chip, allows inexpensive, real-time, in-situ, high-throughput soil analyses and monitoring, e.g., microbial and interfacial processes

Zhu et al. (2022) 💡 Curtin University

What can we gather from the summary table?

		~ ~~~~	\sim	\sim								
	Soil property	γ -rays	X-ray	UV-VIS- NIR-MIR	LIBS	Microw. / Radar	Acoustic / Radio	EMI	E-chem.	E-noses	Mech.	Lab-on- a-chip
Chemical	Organic C and fractions											
	No single but soi	sens I spe	sor s ctros	ystem scopy	that can r	can n neasi	neasu ure ma	re al any c	l prop hemio	erties cal,	9	
	ĥ	ohysi	cal a	ind sor	ne b	iologi	cal pro	pert	Ies			
Physical	Water storage											
	Bulk density											
	Clay, silt, sand											
	Aggregation											
	Penetration resistance											
Biologica	Microbial activity											
	Microbial biomass											
	Respiration/GHG											
	Diversity											
	Enzyme activity											
	Earthworms/fauna											

What can we gather from the summary table?

What can we gather from the summary table?

	Soil property	γ-rays	X-ray	UV-VIS- NIR-MIR	LIBS	Microw. / Radar	Acoustic / Radio	EMI	E-chem.	E-noses	Mech.	Lab-on- a-chip
Chemical	Organic C and fractions											
	There is	no sir	igle s	ensor s	systen	n that c	can mea	asure	e every	thing		
	CEC											
	Some sense	or sys	tems	measu	re dire	ectly b	ut many	y req	uire ca	libratio	n	1
Physical	Water storage											
Combining a carefully selected set of sensors offers several advantages increase information content improved accuracy and reliability provide redundancy increase versatility cost-effectiveness												
	Earthworms/fauna											
											Curt	in University

A multi-sensor platform: SCANS for measuring soil condition

Measurements taken at 5 cm depth increments from 1 m soil cores in total of 20 minutes

Viscarra Rossel et al. (2017 EnvSciTech)

Final remarks

Our general need to innovate to sustainably meet the world's needs for food and environmental quality is served by the adoption of soil sensing

Using proximal soil sensors will help to farmers fine-tune enterprise management and balance production with environmental quality, including the preservation of soil

Sensing can empower farmers and land managers everywhere to instantly and continuously focus management on their own specific conditions, effectively enabling the implementation of sustainable soil management practices

Acknowledgements: Thanks to ISSPA for the support Thanks to the postdocs, students & collaborators who contributed to the research presented

Raphael VISCARRA ROSSEL

Professor of Soil & Landscape Science

r.viscarra-rossel@curtin.edu.au

http://curtin.edu/soil-landscape-sci

@raphvr

O ravr19

Thank you for your attention.