

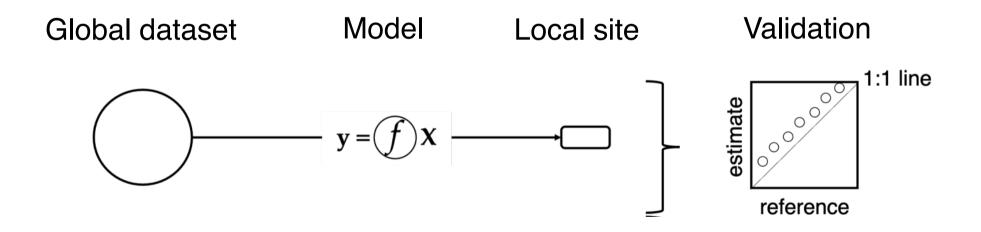
Local Soil Carbon Modelling Using Deep Transfer Learning on Large Soil Spectral Libraries

Zefang Shen and Raphael A. Viscarra Rossel

Soil and Landscape Science Curtin University, Australia 12/12/2022

Problem definition

"Global" models built with large and diverse datasets do not generalise well on more homogeneous "local" data.



Background and aims

Localising soil spectroscopic modelling via data augmentation and transfer learning has been applied with varied performance.

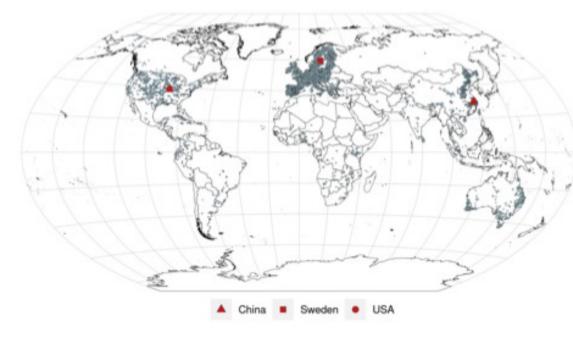
- Spiking
- Memory-based learning
- Transfer learning of representations

Our approach—Deep Transfer Learning (DTL)

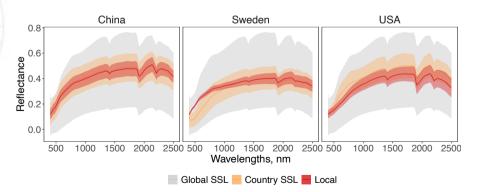
- Deep transfer learning of instances (DTL-I) with RS-Local.
- Deep transfer learning of representations (DTL-R) with one dimensional convolutional neural networks (1D-CNN).
- Combining transfer learning of instances and representations (DTL-IR).

Case study and data

Local soil organic carbon (SOC) modelling Deep transfer learning for localising spectroscopic estimates of soil organic carbon at the farm-scale with a global soil spectral library (SSL).

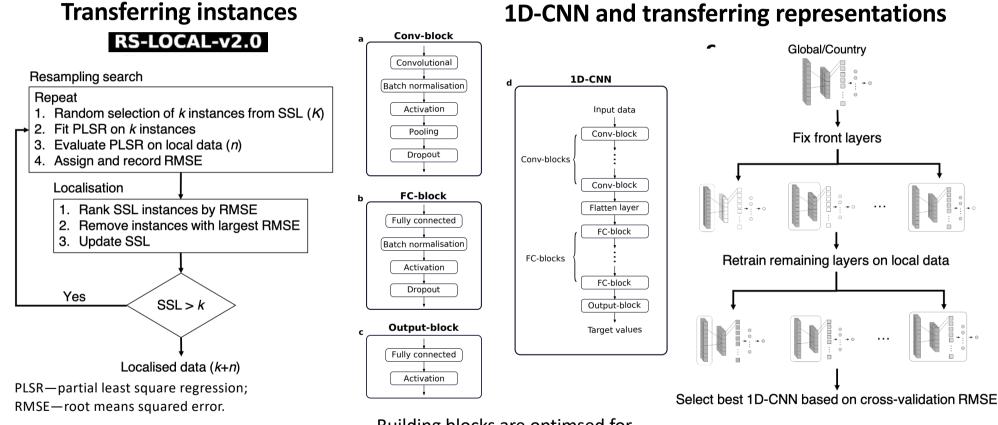


	Dataset	# samples
	Global	50,422
CCI	China	5,183
SSL	Sweden	2,319
	USA	4,155
	China	135
Local	Sweden	108
	USA	216



Shen et al. (2022), Viscarra Rossel et al. (2016).

Methods — Deep Transfer Learning

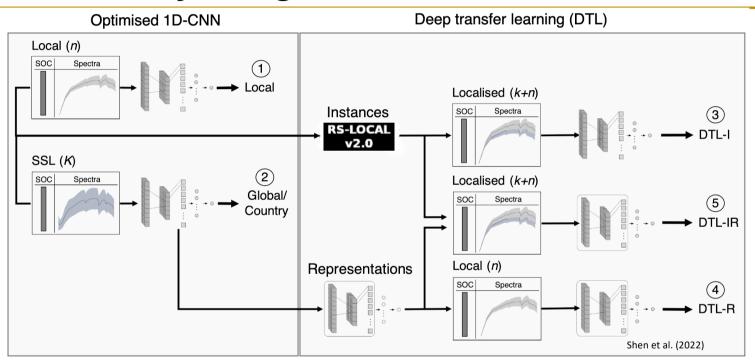


RS-Local-v2.0 selects relevant samples from SSL to augment local data for modelling.

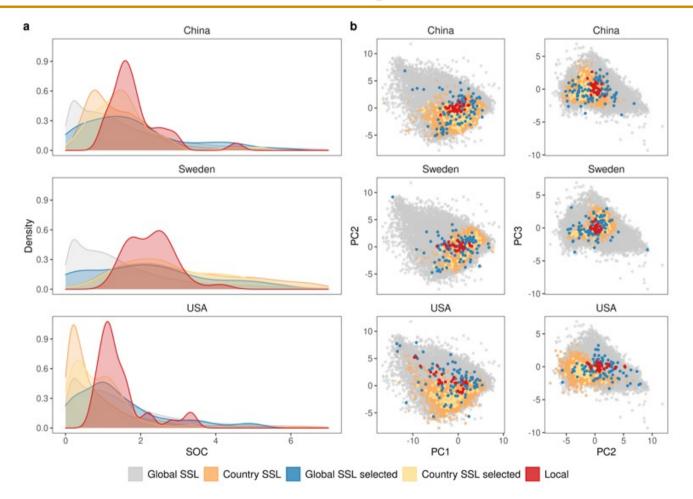
Building blocks are optimsed for best cross-validation performance using Bayesian optimisation.

Lobsey et al., (2017), Shen and Viscarra Rossel (2021), Shen et al. (2022)

Methods — Study design



- (1) Local: 1D-CNN developed on local data (n=30).
- ② Global/Country: 1D-CNN developed on Global/Country SSL(s)
- 3 DTL-I: Deep transfer learning of Instances
- (4) DTL-R: Deep transfer learning of Representations
- 5 DTL-IR: Deep transfer learning of Instances and Representations.



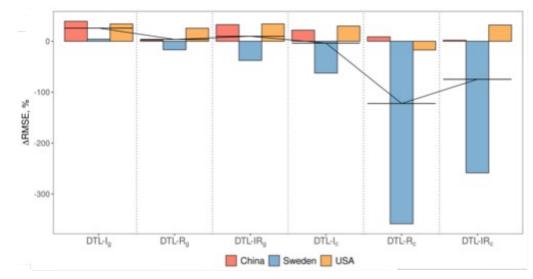
Results—**Transferring** instances

Transferring instances using RS-Local minimised the difference between the conditional distributions of the SSLs and the local data.

٠

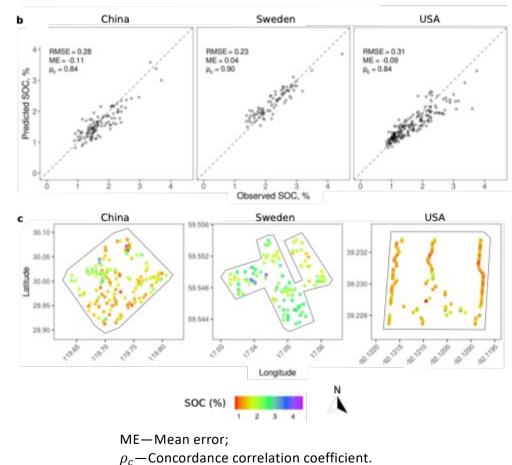
 RS-Local aligned the marginal distributions of the global/country SSLs and the local data.

Results-Model performance



 $\Delta RMSE = (RMSE_{Local} - RMSE_{Other}) \times 100$

- DTL-I from global SSL improved local SOC prediction accuracy by 25.8% on average.
- DTL-R and DTL-IR did not show consistent improvement.



Local site	Block	Lover	Layer Kernel/Pool size Filters/Nodes Padding Strie				
Local site	ВЮСК	Layer	Kernel/Pool size	Filters/ Nodes	Padding	Strides	Activation
	Conv-block	Convolutional	3 x 1	232	Valid	2 x 1	Swish
	CONV-DIOCK	Dropout (0.001)					
China		Flatten					
	FC-block	Fully-connected		22			ELU
	FC-DIOCK	Dropout (0.38)					
	Output-block	Output-block Fully-connected		1			Linear
Conv-block FC-block 1 Sweden FC-block 2	Comu block	Convolutional	10 x 1	214	Same	6x1	SELU
	Dropout (0.20)						
		Flatten					
	FC-block 1	Fully-connected		446			LeakyReLU
		Batch Normalisation					
	FC-block 2	Fully-connected		208			Swish
		Dropout (0.48)					
	Output-block	Fully-connected		1			Linear
		Convolutional	7 x 1	212	Same	3x1	Swish
	Conv-block	Dropout (0.16)					
		Flatten					
USA	FC-block 1	Fully-connected		1005			Swish
	FC-block 2	Fully-connected		1015			SELU
	Output-block	Fully-connected		1			Linear

Results—**DTL**-I_g **1D**-**CNN** architectures

Conclusions

- DTL-I improved local modelling of SOC and the method could help more accurately monitor SOC changes any where in the world.
- Large/Global datasets, e.g. SSLs contain helpful information that can be transferred 'locally' to improve the modelling. There is value in developing and maintaining these large/global datasets.
- More research is needed to understand and improve DTL to further improve local modelling.

When modelling soil and environmental data, we need to think global but act (fit) locally

References

- Shen, Z. and Viscarra Rossel, R.A., 2021. Automated spectroscopic modelling with optimised convolutional neural networks. Scientific Reports, 11(1), pp.1-12.
- Shen, Z., Ramirez-Lopez, L., Behrens, T., Cui, L., Zhang, M., Walden, L., Wetterlind, J., Shi, Z., Sudduth, K.A., Baumann, P., Song, Y., Catambay, K., Viscarra Rossel, R.A., 2022. Deep transfer learning of global spectra for local soil carbon monitoring. *ISPRS Journal of Photogrammetry and Remote Sensing*, 188, pp.190-200.
- Viscarra Rossel, R.A., Behrens, T., Ben-Dor, E., Brown, D.J., Demattê, J.A.M., Shepherd, K.D., Shi, Z., Stenberg, B., Stevens, A., Adamchuk, V. and Aïchi, H., 2016. A global spectral library to characterize the world's soil. Earth-Science Reviews, 155, pp.198-230.
- Lobsey, C.R., Viscarra Rossel, R.A., Roudier, P. and Hedley, C.B., 2017. RS-Local data-mines information from spectral libraries to improve local calibrations. European Journal of Soil Science, 68(6), pp.840-852.

Thank you!

Dr. Zefang Shen

Research Associate Soil & Landscape Science Curtin University, Australia Email: zefang.shen@curtin.edu.au

