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Global environmental challenges B C.in universiy
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Soil is central to our response B C.inUriversic
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Cost-effective soil measurement and sensing are key
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% Curtin University

Soil spectroscopy
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B8 Curtin University
Spectroscopy EXSNIEE
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Soil spectroscopy

vis: electronic transitions mid-IR: fundamental molecular vibrations
NIR: combinations and overtones of soil mineral and organic structures
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The spectral range to use depends on the application —
each has advantages/disadvantage
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Spectra encode fundamental soil information — FIEEuETS

Spectra measure the composition of soil which determines soil properties and functions
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A single spectrum can effectively provide information on the soil and its properties

GLOSOLAN 2™ Plenary meeting on spectroscopy | 2 - 4 November 2021 @

GLOBAL SOIL



Soil spectroscopy research B vy |
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Can measure spectra from different platforms  © Emuz=

Remote sensing Proximal sensing
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Technologies are more accessible

Spectrometers are becoming, smaller, cheaper, smarter, more energy efficient

Greater accessibility is not all positive: it has given some misinformed ‘entrepreneurs’ the idea that simply
the technology and ‘machine learning’ can almost like magic get you results.

Viscarra Rossel et al. (2011 Adv.Agron) GLOSOLAN 2™ Plenary meeting on spectroscopy | 2 - 4 November 2021

GLOBAL SOIL



Developing a soil spectral

ibrary

Curtin University

Domain

Sampling

Archive

Soil analysis

Spectral library

Modelling
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Samples

Spectroscopy

Shepherd & Walsh (2002; SSSAJ)
Brown et al. (2006; Geod)
Viscarra Rossel et al. (2008; AJSR)

Viscarra Rossel & Wester (2012; EJSS)
Stevens et al. (2013; PloSOne)
Shi et al. (2014; SciChinaEarthSci)

Viscarra Rossel et al. (2016; ESR)
Dematte et al. (2019; Geod)
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Spectral modelling

Curtin University

Spectral library
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Viscarra Rossel (2008; CILS); Viscarra Rossel & Webster (2012; EJSS); Viscarra Rossel & Behrens (2010; Geod); Shen & Viscarra Rossel (2021; SciRep)



Challenge 1: How to use spectral libraries to fit locally

Spectral library

Local site Estimates
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A possible solution: data augmentation

Spectral library Model Local site Estimates
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A possible solution: deterministic search

Spectral library Model Local site Estimates
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A possible solution: stochastic/evolutionary search

Spectral library Model Local site Estimates

1:1 line
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Stochastic, evolutionary search / transfer learning (instances)

Curtin University

Promising results.

Selection of fittest’
instances, thus,
less affected by

measurement
disturbances.

Lobsey, et al. (2017) GLOSOLAN 2™ Plenary meeting on spectroscopy | 2 -4 November 2021 Q/



A possible solution: deep transfer learning

Spectral library Model Local site Estimates
1:1 line
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Deep transfer learning (representations)

e.g. Liu, et al. (2018); Padarian et al. (2019);
Shen & Viscarra Rossel (2021)

Tsakiridis et al. (2021)...etc. GLOSOLAN 2™ Plenary meeting on spectroscopy | 2 - 4 November 2021 Q/
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Transfer learned
features. Need
more exploration —
L seem promising.

Useful for
calibration transfer
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Challenge 2: The G.I.G.O. concept is very relevant

Model Key considerations for building spectral
Resuits libraries and to ensuring quality outputs

(ordered list):
K@*Y@»K@ & ©analys .
1. Reference soil analysis (phys, chem, bio)
@7-’ @ »@ C 2. Soil sample handling and preparation
@ -> @ -’@ X 3. Spectral modelling
@ - @ -—p @ V) 4. Spectroscopic measurements

Quality of outputs determined 5. The soil sampling design
by quality of inputs AND
quality of modelling

GLOSOLAN 2™ Plenary meeting on spectroscopy | 2 - 4 November 2021 Q/
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Applications of soil spectroscopy in Australia
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Example 1: Direct quantification colour and mineralogy =z

iron oxides “water © carbonate
| v Measured vis—NIR spectra of ooour” | Finoals T minerals
. b 5,000+ archived representative soil [~ ”g{s/‘i?w
S| o samples from Australia :
= The vis—NIR spectra itself are g
o informative, so digitally mapped ¢ =
= = - - their information content 400 800 1200 1800 2000 2400
Longhude dogrees eas Wavelength (nm)

RGB composite but also Probability of hematite Maps of kaolinite illite, Proxy for soil type
maps of Munsell HVC or goethite smectite 90 x 90 m 90x90m
Viscarra Rossel et al. (2010; JGR-ES) Viscarra Rossel (2011 ; JGR-ES) Viscarra Rossel & Chen (2011; RSE)
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Example 2: Continental-scale application ) CurinUniversiy |

—  #YTERN @ o
AWC 15-30 cm
{".,. i “\‘ 30-60 cm
ECEC 11 33 55 77 100 wase 0-5cm
. £ 'h H 4 30.60cm
¥ T 4 #. 60100 cm
:’ 100-200 cm
Combined soil property data + s
spectroscopic predictions of soil e
attributes enabled continental scale .
digital soil mapping: S, = f(c(, o, r, p, t) o
St (wo,d) = i (uo,d) + 2*(o, d —_—
(o, d) = pa(w,d) +(w,d) |
Viscarra Rossel et al. (2015; AJSR); Grundy et al., (2015; AJSR) GiespLAZRcnalymeetingonspeciescony |2=4 Novemberzon T
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Example 3: Farm-scale application 88 Curtin University |

Automated soil Sensors: Local Measurements of 150 soil cores for
core sensing digital camera spectral farm-scale assessment of soil condition
densitometer modelling
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Enabling global soil spectroscopy ) C.rin Unversit |

* Develop a software platform that enables the =
use of large (country, global) spectral libraries " E ]

« The platform should be versatile and
minimise complexity

» Should be dynamic and enable continual
growth of the library

« Accessible by land managers, farmers,
researchers ...anywhere in the world and for
the common good

GLOSOLAN 2™ Plenary meeting on spectroscopy | 2 - 4 November 2021 @
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Curtin University

Final remarks

» Soil spectroscopy in the current context refers mainly to the visible, near
infrared and mid infrared regions of the EM spectrum
o each has advantages/disadvantages
o the spectral range to use can depend on the: application, availability of
instrumentation, labour, costs,...etc.

« Soil spectra encode unique information on soil organic-mineral composition that
can be used as soil fingerprints’ to more objectively define soil type and
composition and to monitor condition — more research on the direct use of

spectra is needed

GLOSOLAN 2™ Plenary meeting on spectroscopy | 2 - 4 November 2021 Q/



Final remarks

« Standardisation of soil spectroscopy methods for development of specitral
libraries is important, and robust protocols are essential, BUT lets not over-
complicate what is one of the most precise and easy-to-use analytical
techniques

o personally, | think that more effort should be placed on the reference
soil analysis, the sample preparation (drying, grinding, sample
presentation...)

» Development of soil spectral libraries to represent the immense soil
diversity is needed and this might be best done by countries with support
and coordination by GLOSOLAN-Spec — hopefully globeSpeC can help

enable this.
GLOSOLAN 2™ Plenary meeting on spectroscopy | 2 - 4 November 2021 Q/



Final remarks

» Spectroscopic modelling is ‘tricky’...one needs to understand the spectra,
at least some experience and familiarity with robust modelling practice -
more than simply applying a ‘machine learning’ algorithm in R

 In soil spectroscopy, don’t get fooled by the machine learning ‘hype’ — when
appropriately used, ML is absolutely useful, sure, but it is not the only
solution and alone will not solve the ‘localization’ challenge.
For local modelling, with small-medium sized data with linear response,
statistical methods like PLSR are most robust.

GLOSOLAN 2™ Plenary meeting on spectroscopy | 2 - 4 November 2021 Q/



Final remarks

« Soil spectroscopy is not magic, don’t expect miracles. There will be
situations where it might not work, for different reasons, e.g. because there
is no fundamental basis for the modelling, because of the G.I.G.O principle,
because of deficiencies in the sampling design, because the specitral
library does not represent the local variability, etc...

» Lets not lose sight that there are other sensing methods that can also help
to cost-efficiently acquire soil information. Their research and development
IS Important because not any one single technique can do it all...not even
soil spectroscopy.

GLOSOLAN 2™ Plenary meeting on spectroscopy | 2 - 4 November 2021 Q/
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